\(\int \frac {x^3}{(d+e x) (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [479]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 297 \[ \int \frac {x^3}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 d x^2 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 \left (a d e \left (c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )+\left (3 c^3 d^6-7 a c^2 d^4 e^2-a^2 c d^2 e^4-3 a^3 e^6\right ) x\right )}{3 c d e^2 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c^{3/2} d^{3/2} e^{5/2}} \]

[Out]

-2/3*d*x^2*(a*e*(-a*e^2+c*d^2)+c*d*(-a*e^2+c*d^2)*x)/e/(-a*e^2+c*d^2)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2
)+arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^(3/2)
/d^(3/2)/e^(5/2)-2/3*(a*d*e*(-3*a*e^2+c*d^2)*(a*e^2+3*c*d^2)+(-3*a^3*e^6-a^2*c*d^2*e^4-7*a*c^2*d^4*e^2+3*c^3*d
^6)*x)/c/d/e^2/(-a*e^2+c*d^2)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {863, 832, 791, 635, 212} \[ \int \frac {x^3}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \left (x \left (-3 a^3 e^6-a^2 c d^2 e^4-7 a c^2 d^4 e^2+3 c^3 d^6\right )+a d e \left (c d^2-3 a e^2\right ) \left (a e^2+3 c d^2\right )\right )}{3 c d e^2 \left (c d^2-a e^2\right )^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {\text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{c^{3/2} d^{3/2} e^{5/2}}-\frac {2 d x^2 \left (c d x \left (c d^2-a e^2\right )+a e \left (c d^2-a e^2\right )\right )}{3 e \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[In]

Int[x^3/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*d*x^2*(a*e*(c*d^2 - a*e^2) + c*d*(c*d^2 - a*e^2)*x))/(3*e*(c*d^2 - a*e^2)^2*(a*d*e + (c*d^2 + a*e^2)*x + c
*d*e*x^2)^(3/2)) - (2*(a*d*e*(c*d^2 - 3*a*e^2)*(3*c*d^2 + a*e^2) + (3*c^3*d^6 - 7*a*c^2*d^4*e^2 - a^2*c*d^2*e^
4 - 3*a^3*e^6)*x))/(3*c*d*e^2*(c*d^2 - a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + ArcTanh[(c*d^2
+ a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])]/(c^(3/2)*d^(3/2)
*e^(5/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 791

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(2
*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (b^2*e*g - b*c*(e*f + d*g) + 2*c*(c*d*f - a*e*g))*x))*((a + b*x + c*x^2
)^(p + 1)/(c*(p + 1)*(b^2 - 4*a*c))), x] - Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*
p + 3))/(c*(p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
 NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(d + e*x)^(m - 1))*(a + b*x + c*x^2)^(p + 1)*((2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*
g - c*(b*e*f + b*d*g + 2*a*e*g))*x)/(c*(p + 1)*(b^2 - 4*a*c))), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d
+ e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2
*a*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m
+ 2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &
& RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^3 (a e+c d x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx \\ & = -\frac {2 d x^2 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {2 \int \frac {x \left (2 a c d^2 e \left (c d^2-a e^2\right )+\frac {3}{2} c d \left (c d^2-a e^2\right )^2 x\right )}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 c d e \left (c d^2-a e^2\right )^2} \\ & = -\frac {2 d x^2 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 \left (a d e \left (c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )+\left (3 c^3 d^6-7 a c^2 d^4 e^2-a^2 c d^2 e^4-3 a^3 e^6\right ) x\right )}{3 c d e^2 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d e^2} \\ & = -\frac {2 d x^2 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 \left (a d e \left (c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )+\left (3 c^3 d^6-7 a c^2 d^4 e^2-a^2 c d^2 e^4-3 a^3 e^6\right ) x\right )}{3 c d e^2 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {2 \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c d e^2} \\ & = -\frac {2 d x^2 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{3 e \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {2 \left (a d e \left (c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )+\left (3 c^3 d^6-7 a c^2 d^4 e^2-a^2 c d^2 e^4-3 a^3 e^6\right ) x\right )}{3 c d e^2 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c^{3/2} d^{3/2} e^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 218, normalized size of antiderivative = 0.73 \[ \int \frac {x^3}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2 \left (-\frac {\sqrt {c} \sqrt {d} \sqrt {e} (a e+c d x) \left (-3 a^3 e^5 (d+e x)^2+c^3 d^6 x (3 d+4 e x)-a^2 c d^3 e^3 (8 d+9 e x)+a c^2 d^4 e \left (3 d^2-4 d e x-9 e^2 x^2\right )\right )}{\left (c d^2-a e^2\right )^3}+3 (a e+c d x)^{3/2} (d+e x)^{3/2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )\right )}{3 c^{3/2} d^{3/2} e^{5/2} ((a e+c d x) (d+e x))^{3/2}} \]

[In]

Integrate[x^3/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(2*(-((Sqrt[c]*Sqrt[d]*Sqrt[e]*(a*e + c*d*x)*(-3*a^3*e^5*(d + e*x)^2 + c^3*d^6*x*(3*d + 4*e*x) - a^2*c*d^3*e^3
*(8*d + 9*e*x) + a*c^2*d^4*e*(3*d^2 - 4*d*e*x - 9*e^2*x^2)))/(c*d^2 - a*e^2)^3) + 3*(a*e + c*d*x)^(3/2)*(d + e
*x)^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])]))/(3*c^(3/2)*d^(3/2)*e^(5/2)*((
a*e + c*d*x)*(d + e*x))^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(638\) vs. \(2(273)=546\).

Time = 0.69 (sec) , antiderivative size = 639, normalized size of antiderivative = 2.15

method result size
default \(\frac {-\frac {x}{c d e \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (-\frac {1}{c d e \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (2 c d e x +e^{2} a +c \,d^{2}\right )}{c d e \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )}{2 c d e}+\frac {\ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{c d e \sqrt {c d e}}}{e}+\frac {2 d^{2} \left (2 c d e x +e^{2} a +c \,d^{2}\right )}{e^{3} \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}-\frac {d \left (-\frac {1}{c d e \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (2 c d e x +e^{2} a +c \,d^{2}\right )}{c d e \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )}{e^{2}}-\frac {d^{3} \left (-\frac {2}{3 \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right ) \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}+\frac {8 c d e \left (2 c d e \left (x +\frac {d}{e}\right )+e^{2} a -c \,d^{2}\right )}{3 \left (e^{2} a -c \,d^{2}\right )^{3} \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}\right )}{e^{4}}\) \(639\)

[In]

int(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/e*(-x/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d/e*(-1/c/d/e/(a*d*e+(a*e^2+c*d^2)*x
+c*d*e*x^2)^(1/2)-(a*e^2+c*d^2)/c/d/e*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*
d^2)*x+c*d*e*x^2)^(1/2))+1/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x
^2)^(1/2))/(c*d*e)^(1/2))+2*d^2/e^3*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^
2)*x+c*d*e*x^2)^(1/2)-d/e^2*(-1/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-(a*e^2+c*d^2)/c/d/e*(2*c*d*e*x+a
*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))-d^3/e^4*(-2/3/(a*e^2-c*d^
2)/(x+d/e)/(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+8/3*c*d*e/(a*e^2-c*d^2)^3*(2*c*d*e*(x+d/e)+e^2*a-c*d^
2)/(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 726 vs. \(2 (273) = 546\).

Time = 2.06 (sec) , antiderivative size = 1466, normalized size of antiderivative = 4.94 \[ \int \frac {x^3}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

[1/6*(3*(a*c^3*d^8*e - 3*a^2*c^2*d^6*e^3 + 3*a^3*c*d^4*e^5 - a^4*d^2*e^7 + (c^4*d^7*e^2 - 3*a*c^3*d^5*e^4 + 3*
a^2*c^2*d^3*e^6 - a^3*c*d*e^8)*x^3 + (2*c^4*d^8*e - 5*a*c^3*d^6*e^3 + 3*a^2*c^2*d^4*e^5 + a^3*c*d^2*e^7 - a^4*
e^9)*x^2 + (c^4*d^9 - a*c^3*d^7*e^2 - 3*a^2*c^2*d^5*e^4 + 5*a^3*c*d^3*e^6 - 2*a^4*d*e^8)*x)*sqrt(c*d*e)*log(8*
c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x
 + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(3*a*c^3*d^7*e^2 - 8*a^2*c^2*d^5*e^4 - 3*a^3*
c*d^3*e^6 + (4*c^4*d^7*e^2 - 9*a*c^3*d^5*e^4 - 3*a^3*c*d*e^8)*x^2 + (3*c^4*d^8*e - 4*a*c^3*d^6*e^3 - 9*a^2*c^2
*d^4*e^5 - 6*a^3*c*d^2*e^7)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a*c^5*d^10*e^4 - 3*a^2*c^4*d^8*e^
6 + 3*a^3*c^3*d^6*e^8 - a^4*c^2*d^4*e^10 + (c^6*d^9*e^5 - 3*a*c^5*d^7*e^7 + 3*a^2*c^4*d^5*e^9 - a^3*c^3*d^3*e^
11)*x^3 + (2*c^6*d^10*e^4 - 5*a*c^5*d^8*e^6 + 3*a^2*c^4*d^6*e^8 + a^3*c^3*d^4*e^10 - a^4*c^2*d^2*e^12)*x^2 + (
c^6*d^11*e^3 - a*c^5*d^9*e^5 - 3*a^2*c^4*d^7*e^7 + 5*a^3*c^3*d^5*e^9 - 2*a^4*c^2*d^3*e^11)*x), -1/3*(3*(a*c^3*
d^8*e - 3*a^2*c^2*d^6*e^3 + 3*a^3*c*d^4*e^5 - a^4*d^2*e^7 + (c^4*d^7*e^2 - 3*a*c^3*d^5*e^4 + 3*a^2*c^2*d^3*e^6
 - a^3*c*d*e^8)*x^3 + (2*c^4*d^8*e - 5*a*c^3*d^6*e^3 + 3*a^2*c^2*d^4*e^5 + a^3*c*d^2*e^7 - a^4*e^9)*x^2 + (c^4
*d^9 - a*c^3*d^7*e^2 - 3*a^2*c^2*d^5*e^4 + 5*a^3*c*d^3*e^6 - 2*a^4*d*e^8)*x)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*
e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (
c^2*d^3*e + a*c*d*e^3)*x)) + 2*(3*a*c^3*d^7*e^2 - 8*a^2*c^2*d^5*e^4 - 3*a^3*c*d^3*e^6 + (4*c^4*d^7*e^2 - 9*a*c
^3*d^5*e^4 - 3*a^3*c*d*e^8)*x^2 + (3*c^4*d^8*e - 4*a*c^3*d^6*e^3 - 9*a^2*c^2*d^4*e^5 - 6*a^3*c*d^2*e^7)*x)*sqr
t(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a*c^5*d^10*e^4 - 3*a^2*c^4*d^8*e^6 + 3*a^3*c^3*d^6*e^8 - a^4*c^2*d^
4*e^10 + (c^6*d^9*e^5 - 3*a*c^5*d^7*e^7 + 3*a^2*c^4*d^5*e^9 - a^3*c^3*d^3*e^11)*x^3 + (2*c^6*d^10*e^4 - 5*a*c^
5*d^8*e^6 + 3*a^2*c^4*d^6*e^8 + a^3*c^3*d^4*e^10 - a^4*c^2*d^2*e^12)*x^2 + (c^6*d^11*e^3 - a*c^5*d^9*e^5 - 3*a
^2*c^4*d^7*e^7 + 5*a^3*c^3*d^5*e^9 - 2*a^4*c^2*d^3*e^11)*x)]

Sympy [F]

\[ \int \frac {x^3}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {x^{3}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}} \left (d + e x\right )}\, dx \]

[In]

integrate(x**3/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral(x**3/(((d + e*x)*(a*e + c*d*x))**(3/2)*(d + e*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^3}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {x^3}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int { \frac {x^{3}}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}} {\left (e x + d\right )}} \,d x } \]

[In]

integrate(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate(x^3/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(e*x + d)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {x^3}{\left (d+e\,x\right )\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \]

[In]

int(x^3/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)),x)

[Out]

int(x^3/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)), x)